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Abstract: This study evaluates the drivers of the adoption and dis-adoption of Integrated Pest Man-

agement (IPM) practices in the suppression of mango fruit-fly infestation in Embu County, Kenya. 

It employs a Correlated Random Effects Probit Model and a Discrete-time Proportional Hazard 

Model on two-wave panel data of 149 mango farmers selected using a cluster sampling technique. 

The descriptive results show that 59% and 17% of the respondents were adopters and dis-adopters 

of mango fruit fly IPM practices, respectively. Empirical findings reveal that the cost of IPM and 

training on IPM positively and significantly influenced adoption, while the unavailability of the 

technology had a negative and significant effect on adoption. For dis-adoption, the results indicate 

that farm size and the quality of IPM positively influenced the hazard of exit from IPM use, and 

hence, enhanced the sustained adoption of IPM. The study recommends capacity building for 

mango farmers through training and increased access to extension services to enhance the adoption 

of this technology and prevent dis-adoption. 

Keywords: fruit fly; integrated pest management; adoption; dis-adoption 

 

1. Introduction 

Fruit flies are considered the most important pests in the horticulture sector, not only 

in Sub-Saharan Africa (SSA), but also in other parts of the world [1,2]. In particular, they 

are the most predominant pests in mango production due to the magnitude of the eco-

nomic losses that they cause [1,2]. Fruit fly infestation attracts quarantine measures that 

prevent horticultural produce from accessing export markets, reducing foreign exchange 

earnings and farmers’ net income [3]. In Africa, total annual losses in mango production 

are estimated at USD 2 billion, 40% of which are due to fruit fly infestation [3]. In Kenya, 

farmers find it difficult to control fruit fly infestation because of the ecology of the pest 

constraint [4]. The pupa stage of these pests in the soil offers them protection from insec-

ticides that are applied on the surface [4,5]. 

For many years in Kenya, mango farmers have relied on the conventional use of syn-

thetic pesticides to control fruit flies [6]. However, the method is unsustainable because syn-

thetic pesticides are not only expensive, but they also pose negative risks to human health 

and the environment [7]. Historically, farmers have also used indigenous control methods 

which they consider more cost-effective and environmentally friendly but less effective, 

such as “smoking herbs” [8]. In response to these challenges, the International Center for 

Insect Physiology and Ecology (icipe) located in Nairobi, Kenya, and other partners have 

developed and promoted an Integrated Pest Management (IPM) package as a more sustain-

able approach to managing mango fruit fly infestation over the last decade [3]. 
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IPM is a decision-based process involving the coordinated use of multiple different 

techniques to effectively manage pests [9]. icipe’s fruit fly IPM package consists of five 

components; the male annihilation technique, spot spraying of food bait, Metarhizium 

anisopliae-based bio-pesticide application, releases of the parasitoid, and use of orchard 

sanitation [10,11,12]. The male annihilation technique (MAT) entails the use of phero-

mones combined with toxicants to reduce the male fruit fly population [3]. Since immature 

female fruit flies require protein for their eggs to develop, they are attracted to food baits 

containing toxicants placed at specific locations in the orchard. Bio-pesticides are fungus-

based formulations that target the fruit fly at the larva and emerging adult stages [3]. The 

release of parasitoids is a biological control strategy where beneficial insects are intro-

duced to feed on the mango fruit flies [3]. Orchard sanitation comprises a number of prac-

tices, including systematically collecting and disposing of all infested fruits found on trees 

and the ground [3]. 

The adoption of fruit fly IPM in mango production (defined in this study as the use 

of at least one of the five practices) has been reported to both directly and indirectly yield 

positive and significant benefits [6,8,10]. The major direct benefits are: reduced expendi-

ture on pesticides; higher yields and income from mangoes; decrease in mango losses; and 

reduced negative effects on human health and the environment [6,7,10]. Some of the indi-

rect benefits are improved household diets and women’s empowerment from higher in-

comes [11,12]. In spite of the direct and indirect benefits from the adoption of fruit fly IPM, 

it has been found that some farmers make the decision to dis-adopt the technology; e.g., 

Wangithi et al. [8]. In this study, the dis-adoption of IPM was defined as the choice of 

farmers to voluntarily stop using all fruit fly IPM components that they had used in at 

least the last three mango production seasons [8]. In addition to dis-adoption, it has also 

been observed that the adoption of fruit-fly IPM technology is slow [8,10,13–15]. 

Some of the factors which have been shown to explain the variation in the adoption 

of fruit fly IPM among farmers are: technology-specific characteristics, such as cost and 

unavailability; farm and farmer characteristics, particularly education of the household 

head; household size; training; farm size; and membership to groups related to mango 

production [8,10,13–15]. On the other hand, variation in dis-adoption of the technology 

has been explained by the unavailability of the required inputs in the market and their 

high cost [8]. Sahin [16] attributed technology dis-adoption to the emergence of superior 

technologies and the dissatisfaction of some farmers with the performance of specific IPM 

technologies. While these past studies have provided useful insights into IPM adoption, 

they do not consider the partial, seasonal, or scale of use of IPM technology. 

Using three mango production seasons between the baseline and endline surveys 

(that is, 2019/2020, 2020/2021, and 2021/2022), we defined continuous users of IPM as 

farmers who used IPM in all three of the production seasons, while seasonal users were 

farmers who used fruit fly IPM in one or two of the described seasons. In order to assess 

of use of IPM on their mango orchards in terms of scale, farmers were classified as partial 

farm users or whole-farm users of the technology. Whole-farm IPM users were farmers 

who used fruit fly traps (MAT) throughout their entire mango orchard, while partial farm 

users were those that only used the traps in a section of their mango orchards. Seasonality 

and scale of use have not been evaluated in previous studies on fruit fly IPM, even though 

they contribute to the understanding of the reasons for the different decisions made by 

IPM users.  

Even though a significant portion of the literature on technology adoption has fo-

cused on factors influencing adoption, there exists limited evidence on the factors influ-

encing technology dis-adoption, since most studies have treated dis-adopters as non-

adopters [8,10–15,17]. Similarly, there is limited information on fruit fly IPM dis-adoption. 

Wangithi et al. [8] assessed the determinants of fruit fly IPM dis-adoption in Kenya using 

cross-sectional data, but did not fully examine the drivers of adoption or explore the dy-

namics of adoption. In addition, previous studies on fruit fly IPM adoption [8,10–15,17] 

have not considered IPM-technology-specific factors, such as cost of IPM, quality of IPM, 
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and unavailability of IPM when assessing the determinants of adoption of the technology. 

This study fills these gaps by assessing the determinants of fruit fly IPM adoption, as well 

as their dis-adoption using duration analysis. In addition, we test the hypothesis that “the 

perceived benefits of IPM technology do not influence adoption and dis-adoption of the 

technology”. 

2. Study Methods 

2.1. Theoretical Framework and Empirical Approach 

The decision to adopt or dis-adopt an IPM technology in this study is modeled fol-

lowing the random utility theory, which posits that decision-makers are rational and will 

seek to maximize utility based on the available choices [18]. Farmers facing a set of avail-

able alternatives will choose the alternative that maximizes their utility [19]. Following 

Greene [20], the utility function for the adoption of mango fruit fly control IPM technology 

was specified as follows: 

U� = X� β��� + ε��� (1)

U� = X� β��� + ε��� (2)

where U� is the utility derived from adopting the mango fruit fly IPM strategy; Un is the 

utility derived by the farmers using alternative control strategies, such as synthetic pesti-

cides and indigenous methods. β are the parameter estimates and ε is the error term. 

Subsequently, the observed measure of adoption equals one (1) if U�>U� and equals zero 

(0) otherwise. 

When the utility of adopting IPM diminishes, farmers discontinue the use of this 

technology [21–23]. Following the random utility theory, we assume that farmers choose 

to adopt the IPM technology because of the higher benefits they derive from the adoption 

of IPM technology, and they choose not to adopt based on the benefits they derive from 

using other strategies, such as synthetic pesticides and indigenous methods in managing 

mango fruit flies. 

Assessment of the determinants of technology adoption is guided by the nature of 

the dependent variable. In cases where a discrete choice is made, a Probit or Logit model 

is used depending on whether a normal or a logistic distribution is appropriate [14]. Mul-

tinomial logit is used in cases where the dependent variable has many choices [8]. Other 

models used are the negative binomial regression, logistic regression, and Poisson [17]. 

These models use cross-sectional data and are not suitable for the current study, which 

uses panel data. 

The decision to adopt fruit fly IPM over time can be modeled using binary choice 

panel data estimators, such as a Fixed Effects Logit Model (FEL) and a Correlated Random 

Effects Probit Model (CREP) [21]. The fixed effects logit model is based on a within-trans-

formation that would drop any time-constant explanatory variables, such as distance to 

the input market and farm size, and, on variations in the dependent variable over time, 

which would reduce the number of observations to be used for estimation [22]. Due to 

these limitations of a fixed effects logit model, the correlated random effects probit model 

was used.  

The decision by farmers to dis-adopt IPM technology can be modeled using duration 

analysis models, such as a Cox Proportional Hazard Model (CPHM) and a Discrete-time 

Proportional Hazard Model (DPHM) [23]. Duration analysis is concerned with the timing 

of events where the event variable represents the transition from one state to another; for 

instance, from the adoption to the dis-adoption of IPM [24]. The CPHM model is based on 

a continuous time analysis and cannot deal with unobserved individual heterogeneity, 

such as mango farmers’ skills and motivation. Thus, it was not appropriate for the current 

study because the duration between adoption to dis-adoption of fruit fly IPM is charac-

terized by discrete distribution and not continuous distribution [21,25]. 
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The Correlated Random Effects Probit was used to model mango farmers’ decision 

to adopt IPM technology. The model is appropriate for use in panel data as it can be used 

to test the random effects (RE) assumption that heterogeneity, such as mango farmers’ 

skills and motivation, is independent of time-varying covariates; for example, age, educa-

tion of the household, and household size [21]. Following Alem et al. [21], the latent ben-

efit of IPM adoption was specified as follows;  

n
∗
it

= X′��β + ε�� i =  1,2 … N;  t =  1 … T (3)

ε�� =α�+μ�� (4)

n�� = �
1 
0 

if  n
∗
it

> 0 

if n
∗
it

≤ 0 
 (5)

where n
∗
it

 is the latent dependent variable; X�� is a vector of time-variant and time-invari-

ant variables, such as age and gender; β is a vector of parameters to be estimated; ε�� is 

the composite error term; α� unobserved individual heterogeneity; μ�� the random error 

term; n�� is the observed binary outcome variable showing the adoption of fruit fly IPM; 

i and t are the smallholder mango farmers and periods, respectively. 

In estimating the parameters, the unobserved individual heterogeneity (α�), such as 

mango farmers’ motivation and skills, was assumed to be correlated with the observable 

variables (X��) and time [26]. The transformation is made on the unobserved individual 

heterogeneity term in Equation (4), and the averages of independent variables are gener-

ated and included as additional regressors 

α� = φ +
−
X�

ϵ + a�, a�/~N(0, δ�
�)  (6)

where 
−
X�

 is the average time-varying variable in Xit; δ�
� is the variance of unobserved in-

dividual heterogeneity (α�). 

To model the decision to dis-adopt IPM technology, the Discrete-time Proportional 

Hazard Model was used. The model is used in duration analysis in evaluating factors that 

have a significant effect (both positive and negative) on the hazard of exit from adoption 

and entry into dis-adoption [27]. 

The hazard rate represents the risk of exit from adoption to dis-adoption in the cur-

rent study and shows the proportion of households remaining in the adoption state at the 

time of observation [21,23]. Jenkins [23] specifies the discrete-time hazard rate h�� as; 

h�� = prob(T� =
�

��
≥ t;  X��)  (7)

where; T� is a discrete random variable representing the time at which adoption duration 

ends; X�� represents a vector of explanatory variables [23]. The proportional hazard spec-

ified by Jenkins [23] was used to analyze IPM adoption as follows; 

h�� = h�(t)exp ( X�
��β) (8)

where h��= pr(yit=1/Xit); yit =1 if a farmer dis-adopts IPM at time t; h�� is the hazard rate of 

adoption; h�(t) is the baseline hazard function which is common to all farmers within 

the sample [21]; X�
�� is the vector of regressors; β is the vector of parameter estimates. 

The exponential specification of the hazard function is adopted, since the form ensures 

that the hazard function is non-negative without imposing restrictions on β coefficients. 

In addition, it facilitates the interpretation of the results as the estimated β coefficients 

show the direction and magnitude of influence of the covariates on the hazard rate [28]. 

To control for the unobserved individual heterogeneity, a random error term that is as-

sumed not to be correlated with any of the regressors is multiplicatively introduced into 

the model in Equation (8), as shown below [23]. 
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h�� = h�(t)ϑ�exp (=h�(t)exp [X�
�� + log (ϑ�)]  (9)

Consequently, the discrete-time function in the jth interval that is in concordance 

with Equation (10) above is specified as follows;  

h��X�
��� = 1 − exp [−exp ( X�

��β) +γ�+log (ϑ�)] (10)

γ� ; The parameter of the baseline hazard. 

2.2. Definition and Measurement of Variables 

The use of the male annihilation technique (MAT) was applied in the current study 

as a proxy for fruit fly IPM adoption as it is the most commonly used and commercialized 

component of the IPM package and generates significant benefits when used by itself 

[10,29]. The variable was specified as a dummy variable; a farmer using MAT was as-

signed one and zero otherwise for the adoption model, while one who used the technol-

ogy before and stopped was assigned one and zero otherwise in the dis-adoption model 

(Table 1). The choice for independent variables included in the adoption and dis-adoption 

models was informed by the literature on agricultural technology adoption and, particu-

larly, the adoption of fruit fly IPM and, in the context of our study [8,10–15,17], includes 

demographic characteristics, household resources, access to information, social capital, 

and networking and technology attributes. 

Table 1. Description of variables used in the Correlated Random Effects Probit and Discrete-time 

Proportional Hazard Models. 

Dependent Variable Definition and Measurement 

IPM Adoption 
Are you currently/in the previous mango season used the male annihilation technique; 1 = 

yes, 0 = No 

IPM Dis-adoption 
If not using/did not use the male annihilation technique in the previous mango season, 

were you using and stopped? 1 = yes, 0 = No 

Independent Variables 
Definition and Measurement Expected Sign 

 Adoption Dis-adoption 

Household demographic characteristics   

Gender of household head Gender of household head (1 = male 0 = Female) −/+ −/+ 

Size of household Household size in count −/+ −/+ 

Education of household 

head 
Number of schooling years of the household head + − 

Age of household head Age of the household head in years −/+ −/+ 

Household resources    

Farm size Total owned land in Acres + −/+ 

Farm income 
Proportion of farm income out of total annual 

household income (%) for the last 12 months 
+ − 

Market and institutional information access  

IPM training 
Attended training on Fruit Fly Integrated Pest 

Management (1 = yes, 0 = No) 
+ − 

Distance to input market 
Minutes taken by a farmer to walk to the nearest 

source of input market 
− + 

Contact extension officer 
Visited by an extension officer in the last 12 months 1 = 

yes, 0 = No 
+ − 

Social capital    

Mango group 

membership 

Membership in a mango production/marketing group 

(1 = Yes, 0 = No) 
+ − 
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Access to credit services 
Accessed agricultural credit services in the last 12 

months (1 = yes, 0 = No) 
+ − 

Fruit fly IPM attributes   

Unavailability of IPM 
Whether unavailability of male annihilation technique 

is a constraint to its adoption (1 = yes, 0 = No) 
− + 

Cost of IPM 
Whether cost of male annihilation technique is a 

constraint in adoption (1 = yes, 0 = No) 
− + 

Quality of IPM 
Whether quality of male annihilation technique is a 

constraint in adoption (1 = yes, 0 = No) 
+ − 

The gender of the household head was measured as a dummy (1 = Male, 0 = Female) 

variable, and was hypothesized to have a positive effect on adoption and a negative effect 

on the dis-adoption of IPM. The size of the household was measured as the total count of 

persons who live and eat together from the same pot (share food) and was hypothesized 

to have a positive effect on adoption and a negative effect on the dis-adoption of fruit fly 

IPM. We hypothesized the education of the household head to have a positive influence 

on the adoption of IPM and a negative effect on dis-adoption. Education was measured 

as the total number of years of formal education. The direction of influence of the age of 

the household head is indeterminate on both the adoption and dis-adoption of IPM. The 

age of the household head was measured in years. Farm size was hypothesized to have a 

positive and negative influence on IPM adoption and dis-adoption, respectively. Farm 

income was measured as the proportion of income generated from the farm out of the 

total annual household income, and its direction is indeterminate.  

IPM training is likely to have a positive influence on IPM adoption and a negative 

influence on dis-adoption. IPM training was specified as a dummy variable (farmer who 

had attended IPM training was assigned one and zero otherwise). Distances to the input 

market (the number of minutes a mango farmer takes to walk to the nearest mango input 

market) was hypothesized to have a negative influence on the adoption of IPM and a pos-

itive effect on dis-adoption. Extension contact was hypothesized to have a positive influ-

ence on the adoption of IPM and a negative effect on IPM dis-adoption. It was quantified 

as a dummy variable if a farmer was visited by an extension officer 12 months before the 

survey. Mango group membership (dummy variable equal to one if a farmer belonged to 

a mango production and marketing group, and zero otherwise) was expected to positively 

influence IPM adoption. Technology attributes may positively or negatively influence a 

farmer’s decision to adopt a technology. In this study, we controlled for the unavailability, 

the perceived cost, and the quality of the most commercialized fruit fly IPM component 

(that is MAT); all variables were measured as dummy variables. While the cost and una-

vailability of the technology are likely to inhibit farmers from adopting the technology, 

quality is likely to induce them to take it up, while a contrasting effect is expected for the 

dis-adoption decisions.  

We implemented the Correlated Random Effects Probit Model by first generating the 

means for all the continuous explanatory variables such as age, household size, education 

of the household head, and distance to the input market, and then included them as ad-

ditional covariates. The model was then fitted using the xtprobit command in STATA. In 

addition, the Random Effects Probit Model (REP) was also run to test for the robustness 

of the different determinants of adoption. Estimation of the Discrete-time Proportional 

Hazard Model involved the creation of three new additional covariates, including an in-

terval identification variable, a period-specific censoring indicator, and the definition of 

variables as a function of time [30]. The interval identification variable captured the dura-

tion of IPM adoption; i.e., years from initial use to the survey (the year 2022). The period-

specific variable was constructed to capture whether a mango farmer had left the IPM 

adoption state and entered the dis-adoption state. The model was then fitted using the 

pgmhaz command in STATA [30].  
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2.3. Data Sources and Sampling Procedure 

The data for the current study were obtained from mango farmers in the Runyenjes 

and Manyatta sub-counties of Embu County, Kenya. The county (Figure 1) was purpos-

ively selected by the African Fruit Fly Program of icipe as a benchmark project site, since 

it is one of the leading mango-producing counties in Kenya. 

 

Figure 1. Map of the study area; Source: Wangithi et al., 2021 [8]. 

The data were collected in two phases; a baseline survey conducted in 2019 by 

Wangithi et al. [8] and a follow-up survey conducted in 2022. The baseline survey used a 

cluster sampling technique to select 165 mango farmers in Embu County (8). In the first 

stage, the Runyenjes and Manayatta sub-counties were purposively selected since they 

lead mango production in the county. The sampling frame was a list of mango-growing 

households generated by sub-county agricultural officers. In the second stage, a simple 

random sampling technique was used to select 165 households from the two sub-counties 

following [31]. The follow-up survey targeted the same households interviewed during 

the baseline survey, but only 149 households were accessed (approximately 11% attrition) 

due to relocation from the county. The current study used a balanced panel dataset of 149 

households. More detailed descriptions of the study area, target population, sampling 

frame, and sample size are provided by Wangithi et al. [8]. 

The baseline and follow-up datasets were collected using semi-structured question-

naires programmed in the Census and Survey Program System (CSPro) and collected 
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through face-to-face interviews by enumerators trained and supervised by the research 

team. Data were analyzed using STATA 16. 

3. Results 

3.1. Descriptive Analysis 

3.1.1. Farms, Farmers, and IPM Technology Characteristics of Mango Growers in Kenya 

Different classifications of farmers by IPM adoption were achieved by first asking the 

respondents whether they were using or had used the male annihilation technique (MAT) 

in the last mango production season. The classification generated three different adoption 

categories—adopters or dis-adopters of IPM; seasonal or continuous users of IPM; and, 

partial or whole farm users of IPM.  

Adopters and dis-adopters were further divided into three different sub-categories: 

farmers who were using the male annihilation technique (MAT) at the time or had used 

in the previous mango production season were classified as IPM adopters; farmers who 

had never used MAT were classified as IPM non-adopters, while farmers who had used 

MAT earlier but had discontinued the use were classified as IPM dis-adopters. Based on 

this classification, 59% of the respondents were IPM adopters, 24% were non-adopters, 

and 17% were dis-adopters. Table 2 presents a comparison of the farms, farmers, and IPM 

technology attributes. A statistical F test was conducted to test for differences in the vari-

ables across the different farmer categories.  

Table 2. Comparison of the farms, farmers, and fruit fly IPM technology attributes of mango-grow-

ing households across different adoption profiles in Embu County Kenya. 

Explanatory Variables 

Mean     

Pooled 
IPM 

Adopters 

IPM Non-

Adopters 

IPM Dis-

Adopters 
F-Test 

n = 298 n = 176 n = 72 n = 50  

Household demographic characteristics      

Gender of household head 0.74 0.78 0.62 0.74 3.67 ** 

(1 = Male, 0 = Female)      

Size of household(count) 3.57 3.66 3.43 3.48 0.49 

Education of household head (years of schooling) 9.32 9.81 8.33 9.00 3.75 ** 

Age of household head (years) 63.44 63.99 60.36 65.98 3.83 ** 

Resources      

Proportion of annual farm income (percentage) 65.38 68.31 60.94 61.44 2.39 

Farm size (acres) 4.13 4.62 3.21 3.73 2.61 ** 

Market and institutional information access      

IPM training (1 = Yes) 0.49 0.65 0.26 0.28 24.40 *** 

Distance to input market (minutes taken when 

walking) 
34.46 36.32 29.51 35.06 1.71 

Contact extension officer(1 = Yes) 0.43 0.55 0.27 0.26 12.40 *** 

Access to credit services (1 = Yes) 0.10 0.13 0.8 0.4 2.18 

Social capital         

Mango group membership(1 = Yes) 0.10 0.16 0.01 0.02 8.94 *** 

Fruit fly IPM attributes           

Unavailability of IPM 0.45 0.48 0.51 0.56 9.01 *** 

Cost of IPM 0.57 0.56 0.55 0.58 3.76 ** 

Quality of IPM 0.41 0.44 0.4 0.38 6.70 *** 

Source: Author’s survey data (2022); ** p < 0.05, *** p < 0.01. 
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The results (Table 2) show that about a third of the fruit fly IPM non-adopting house-

holds were headed by females. The education of the household heads was statistically 

different across the adoption profiles. Fruit fly IPM adopters had relatively higher educa-

tion (10 years) compared to both the non-adopters (8 years) and dis-adopters (9 years). 

The average age of the household heads across the three different groups was significantly 

different. The average age of heads of fruit fly IPM dis-adopters (66 years) was relatively 

higher compared to both the adopters (64) and non-adopters (60) of the technology. Fruit 

fly IPM adopters had relatively bigger farm sizes (4.62 acres), compared to non-adopters 

(3.21 acres) and dis-adopters (3.73 acres). Further results indicated that a bigger propor-

tion of fruit fly IPM adopters (65%) received training on IPM, compared to non-adopters 

(26%) and dis-adopters (28%). The majority of the dis-adopters perceived the availability 

(56%) and cost of fruit fly IPM (58%) to be constraints that hindered adoption and contin-

uous use of the technology.  

Figure 2 presents the additional reasons reported by the fruit fly IPM dis-adopting 

households. The major reason reported by 41% of the households was lack of money to buy 

IPM inputs. These results are consistent with those of Wangithi et al. [8], who found una-

vailability of IPM inputs in the market to be the main driver of dis-adoption.  

 

Figure 2. Reasons for fruit fly IPM dis-adoption in Embu, Kenya; Source: Author’s survey data 

(2022). 

3.1.2. Seasonal Use of Fruit Fly IPM 

The second classification of IPM users was IPM use by season, where adopters were 

categorized as either seasonal users or continuous users. A comparison of seasonal and 

continuous users showed that 71% of IPM adopters were continuous users, while 29% 

were seasonal users. The main constraint for the seasonal use by IPM users was limited 

awareness or knowledge on the replacement of the lures, reported by 52% of the seasonal 

IPM users (Figure 3). Mango farmers also cited a lack of cash to buy and maintain IPM, 

and the unavailability of IPM to be the second and third reasons, respectively, leading to 

the seasonal use of the technology. 
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Figure 3. Reasons for seasonal use of fruit fly IPM in Embu, Kenya: Source: Author’s survey data 

(2022). 

3.1.3. IPM Use by Scale of Application in the Mango Orchards 

Even when the benefits of technology have been proven, the adoption of most intro-

duced agricultural technologies is often partial, possibly to reduce the uncertainty in per-

formance associated with innovations [32]. A total of 60% of IPM adopters were whole-

farm IPM users, while 40% were partial-farm IPM users. A lack of money to buy and ser-

vice fruit fly traps was cited as the main constraint leading to partial-farm use of the tech-

nology (Figure 4). Other constraints cited were the small-scale nature of production, lack 

of a ready market for the mangoes, crop destruction by wild animals, and a lack of tech-

nical support in handling the technology. The perceived non-effectiveness of the IPM re-

ported by a few respondents could be attributed to the incorrect timing of the replacement 

of the traps, suggesting the need for further training and technical support for enhanced 

adoption of the technology.  

 

Figure 4. Reasons for partial-farm use of fruit fly IPM in Embu, Kenya: Source: Author’s survey 

data (2022). 
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3.2. Empirical Results 

The empirical analysis is based on adoption and dis-adoption of fruit fly IPM group-

ing because adequate data was not available for the other groups. 

3.2.1. Determinants of the Adoption of Fruit Fly IPM 

Table 3 presents the maximum likelihood effects (MLE) of the factors influencing the 

adoption of IPM practices in controlling fruit fly infestation among mango growers in 

Embu County.  

Table 3. Factors influencing the adoption of fruit fly IPM among mango farmers in Embu, Kenya. 

IPM Adoption 
Correlated Random 

Effects Probit 
Random Effects Probit 

Gender of household head  0.16 *** (0.06) 0.12 ** (0.06) 

Size of household (count) 0.01 (.03) 0.01 (0.02) 

Education of household head  0.05 (0.01) 0.01 (0.01) 

Age of household head (years) −0.06 *** (0.01) −0.01 * (0.02) 

Farm size (acres) 0.01 (0.01) 0.04 (0.06) 

Proportion of annual farm income  0.00 (0.01) 0.00 (0.01) 

IPM training (1=Yes) 0.27 *** (0.56) 0.29 *** (0.06) 

Distance to input market in walking minutes  0.08 (0.03) 0.08 ** (0.03) 

Contact extension officer (1 = Yes) 0.13 ** (0.05) 0.11 ** (0.06) 

Mango group membership(1=Yes) 0.22 ** (0.09) 0.20 ** (0.09) 

Access to credit services (1 = Yes) 0.04 (0.84) 0.01 (0.85) 

Unavailability of IPM −0.19 *** (0.05) −0.23 *** (0.06) 

Cost of IPM 0.11 **(0.05) 0.11 ** (0.06) 

Quality of IPM −0.07 (0.05) −0.05 (0.54) 

Overall r-squared 0.35 0.30 

Number of obs 298 298 

Chi-square 142.17 111.56 

Prob > chi2 0.00 0.04 

Significance at *** p < 0.01, ** p < 0.05, * p < 0.1. Source: Author’s survey data (2022). 

The results show that age and the unavailability of IPM have statistically significant 

negative effects on the adoption of the technology, while gender, IPM training, access to 

extension, mango group membership, and quality of IPM have positive and statistically 

significant influences on adoption.  

3.2.2. Determinants of Fruit Fly IPM Dis-Adoption among Mango Growers in Embu, 

Kenya 

Table 4 presents the results for the dis-adoption decisions. The risk of exit from adop-

tion to dis-adoption is shown by the hazard rate, which shows the number of mango farm-

ers found in the adoption state at the time of observation [21,23]. The gender, education, 

and age of the household head, the farm size, and the perceived quality of MAT have 

positive and statistically significant effects on the hazard rate. 
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Table 4. Determinants of fruit fly IPM dis-adoption among mango growers in Embu, Kenya. 

IPM Dis-adoption Coefficient Standard Error 

Gender of household head (1 = Male, 0 = Female) 0.89 * 0.47 

Size of household(count) −0.01 0.11 

Education of household head (years of schooling) 0.18 *** 0.06 

Age of household head (years) 0.04 ** 0.02 

Farm size (acres) 0.20 *** 0.01 

Proportion of annual farm income (percentage) 0.01 0.05 

IPM training (1 = Yes) 0.77 0.31 

Distance to input market (minutes taken when walking) −0.13 0.30 

Contact extension officer(1 = Yes) 0.01 0.56 

Mango group membership(1 = Yes) −0.91 0.98 

Access to credit services (1 = Yes) −0.52 0.64 

Unavailability of IPM −0.52 0.33 

Cost of IPM 0.02 0.31 

Quality of IPM 0.71 ** 0.33 

Constant −6.01 *** 1.41 

Log-likelihood −81.12  

Number of obs 298  

Chi-square 155.40  

Prob > chi2 0.00  

Standard errors in parenthesis; significance at *** p <0.01, ** p <0.05, * p < 0.1; Source: Author’s survey 

data (2022). 

4. Discussions 

4.1. Adoption of Fruit-Fly IPM by Scale and Seasonality of Use 

The partial fruit fly IPM adopters only applied the technology on a few of their 

mango sub-plots or sections of the orchard, and limited resources to buy and service the 

traps were cited as the main challenge. Other reasons included the lack of a ready market 

to sell high-quality fruits to compensate for their efforts to implement the technology in 

other sections of their orchards. Lack of technical support contributing to lack of 

knowledge was also highlighted as one of the reasons contributing to the partial adoption 

of the technology. As noted by Wangithi et al. [8], the partial adopters did not use the 

recommended rates for the replacement of the lures, and hence, reported the ineffective-

ness of the technology in controlling the fruit fly pest.  

Seasonal users of the fruit fly IPM reported limited awareness or knowledge on the 

replacement of the lures as the main constraint followed by the unavailability of IPM in-

puts in the market and their high prices. These findings corroborate those of Wangithi et 

al. [8]. In addition, the lack of technical skills in using IPM products was also a contrib-

uting factor to the seasonal use of the technology. These constraints are similar to those 

reported by previous studies on the adoption of agricultural technologies (Quisumbing et 

al. [33], and Feyisa [34]. 

4.2. Determinants of Fruit Fly IPM Adoption among Mango Growers in Embu, Kenya 

Age of the household head negatively influences the adoption of the fruit fly IPM, 

suggesting a lack of receptivity among older farmers toward newly introduced technolo-

gies [35]. Older farmers who have spent more time growing mangoes may be reluctant to 

take the risk of adopting new unfamiliar technologies for the management of mango fruit 

flies, as found by Kafle [36], who associated the negative effect of age on adoption with 

the risk averseness and unwillingness of older farmers to accept change in the production 

techniques that they have previously used. 
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Contact with agricultural extension service providers, a proxy for access to infor-

mation, was positively related to the adoption of IPM. As reported by Kafle [36], regular 

contact with extension agents enhances awareness of new technologies and the skills 

needed to use them. Fisher [37] also reported that farmers who received information on 

modern technologies were more likely to adopt them as compared to those who did not. 

IPM training seeks to increase awareness and impart skills needed in the adoption of IPM 

technology. Parsa et al. [38] noted that insufficient training and technical support are the 

major obstacles to IPM adoption in developing countries. Quazi [39] and [40] noted that 

training and extension contact are important predictors of the perception and acceptance 

behavior of individuals toward new technologies.  

Social capital through membership in the mango group positively influences the 

adoption of IPM technology. Manda [41] reported that farmer groups provide avenues 

that enhance easy training and dissemination of new technologies, as well as access to 

credit services that farmers use to purchase new technologies. Our findings are in line 

with the findings of Onyeneke [42], who reported that group membership facilitates easy 

access to agricultural production inputs, thereby enhancing adoption. In addition, group 

membership aids farmers to access credit services, extension information regarding the 

crop, and access to output markets [40].  

Technology characteristics, including awareness, accessibility, application, benefits, 

and operating costs, determine the sustainable adoption of technology [43]. The perceived 

unavailability of IPM technology negatively influences the adoption of the technology. 

This is plausible as farmers adopt technologies that they can easily access. These results 

support the findings of Andrade et al. [44], who reported that technologies need to be 

available for enhanced adoption by smallholders. The results of the perceived operational 

costs of the IPM technology corroborate the findings of Asieduh-Ayeh [45], who reported 

that the perceived cost of new technology is not a hindrance to its adoption, as farmers 

consider whether the intended benefits outweigh the associated costs when making the 

adoption decision. 

4.3. Determinants of Fruit IPM Dis-Adoption among Mango Growers in Embu, Kenya 

Larger farm sizes were found to positively influence the continued use of IPM and to 

discourage the dis-adoption of the technology. The farm size is a proxy of household re-

sources and larger farm sizes are attributed to the adoption of modern technologies [46]. 

Years of formal education has a positive impact on the hazard of exit from IPM adoption. 

The educational level of the farmers is often associated with the continued use of agricul-

tural technologies, as it increases the ability to obtain, process, understand, and interpret 

agricultural information acquired from different sources [46]. The gender of the house-

hold head had a positive impact on the hazard of exit from the adoption state of IPM, 

suggesting that women are more likely to dis-adopt IPM compared to men. Men were the 

majority among plot managers, and had greater access to resources as compared to 

women; therefore, male-headed households are likely to adopt and continue using tech-

nologies as compared to female-headed households [8].  

For the technology characteristics, the perceived quality of IPM was positively asso-

ciated with the hazard of exit from adoption. The perceived quality of IPM enhances the 

adoption decisions and sustained use of the technology by mango farmers. Most farmers 

do not perceive the quality of IPM as a constraint to the continued use of the technology. 

This finding is consistent with that of Fedeyi [43], who reported that farmers’ awareness 

of technology’s quality, use, and benefits enhance its adoption. 

5. Conclusions and Policy Recommendations 

This study evaluated the determinants of the adoption and dis-adoption of IPM prac-

tices in the suppression of mango fruit fly infestation in Embu County, Kenya. The de-

scriptive results showed that 59% of the respondents were adopters of IPM practices in 

the suppression of mango fruit fly infestation, 24% were non-adopters, and 17% were dis-
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adopters. Additionally, 40% of the adopters were partial farm users, while 29% were sea-

sonal users of the IPM technology. Farmers who had discontinued the use of IPM tech-

nology cited the unavailability of the technology as the main reason for dis-adoption. Sea-

sonal users of the technology reported limited awareness with regard to the timing on 

when to replace the lures as the main grounds for seasonal use, while partial farm use of 

the technology was attributed to a lack of capital to procure and maintain the technology. 

Thus, IPM technology should be made easily accessible to promote sustained adoption 

and discourage dis-adoption, seasonal use, and partial farm use. 

The empirical results showed that training, the perceived cost of IPM, contact with 

extension officers, group membership, and the gender of the household head positively 

influenced the adoption of IPM practices in the suppression of mango fruit fly infestation. 

Furthermore, the age of the household head and the unavailability of IPM products had a 

negative influence on the adoption of IPM technology. On the other hand, the education 

of the household head, age of the household head, farm size, and the perceived quality of 

IPM positively influenced the hazard of exit from the adoption of IPM practices. This 

study, therefore, recommends building the capacity of mango farmers through training 

and access to extension services to enhance the adoption of this technology and discour-

age dis-adoption. This can be achieved through the intensification of information dissem-

ination by extension officers and farmer groups on the importance of the technology. In 

addition, IPM products should be made easily accessible to farmers to enhance the sus-

tained adoption of the technology. 

While our findings provide useful insights into the different classifications of IPM 

adoption, we lacked enough data for empirical analysis of the last two classifications (sea-

sonality and scale of IPM use in mango orchards). Therefore, further research should con-

sider the empirical assessment of the determinants of the two IPM definition approaches.  
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